Home | Back to Courses
Pump Sizing & Modeling Piping Systems For Liquids

Partner: Udemy
Affiliate Name:
Area:
Description: This course is part of my engineering training library on ChemEngPro, where I provide tools, templates, and bonus materials to help make engineering resources affordable for everyone.Chapter 1: Introduction1. Differentiate between incompressible and compressible fluids using the continuity equation.2. Define and understand general concepts in fluid dynamics, such as viscosity (dynamic and kinematic), Reynolds number (laminar and turbulent flow), and volumetric flow rate.Chapter 2: Energy Balance3. Derive and apply the Bernoulli equation to develop an energy balance for sizing pumps.4. Understand the pump equation and its relation to the Bernoulli equation.5. Apply the pump equation to an illustrative example.6. Create system curves for a piping system.Chapter 3: Friction Headloss7. Understand hydraulic resistances in pipes.8. Define the Darcy equation and its application in calculating frictional headloss.9. Define the resistance coefficient (K) and calculate it using different methods.10. Define the friction factor (f) and calculate it using numerical methods via the Poiseuille equation, Colebrook equation, Swamee Jain equation, or the Moody chart.11. Understand the effect of pipe age on friction factor.12. Define flow coefficient (Cv) and its application in calculating pressure drop.13. Adjust Cv for liquids with different viscosities.14. Find the capacity flow rate at different pressure drops for a given Cv.15. Convert flow coefficient (Cv) to a resistant coefficient (K).16. Understand the use of orifice plates and use the orifice design equation to size orifice plates.17. Apply the orifice design equation in an illustrative example.Chapter 4: Pumps18. Identify and understand the basic components of a pump.19. Calculate pumps Hydr
Category: Teaching & Academics > Engineering > Fluid Mechanics
Partner ID:
Price: 149.99
Commission:
Source: Impact
Go to Course